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Sparse linear solvers . . . for unstructured matrices
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Solving a system of linear equations Ax = b

Iterative methods
A is not changed (read-only)

Key kernel: sparse matrix-vector multiply

 Easier to optimize and parallelize

Low algorithmic complexity, but may not converge for hard 
problems

Direct methods
A is modified (factorized)

 Harder to optimize and parallelize

Numerically robust, but higher algorithmic complexity

Often use direct method to precondition iterative 
method

Increasingly more interest on hybrid methods
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Lecture Plan

Direct methods . . . Sparse factorization
Sparse compressed formats

Deal with many graph algorithms: directed/undirected graphs, 
paths, elimination trees, depth-first search, heuristics for NP-
hard problems, cliques, graph partitioning, cache-friendly dense 
matrix kernels, and more . . .

Preconditioners . . . Incomplete factorization

Hybrid method . . . Domain decomposition
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Available sparse factorization codes

Survey of different types of factorization codes

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf

LLT (s.p.d.) 

LDLT (symmetric indefinite) 

LU (nonsymmetric)

QR (least squares)

Sequential, shared-memory (multicore), distributed-memory, out-
of-core

Distributed-memory codes: usually MPI-based
SuperLU_DIST [Li/Demmel/Grigori]

 accessible from PETSc, Trilinos

MUMPS, PasTiX, WSMP, . . .
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Review of Gaussian Elimination (GE)

 First step of GE:

 Repeats GE on C

 Results in LU factorization (A = LU)
 L lower triangular with unit diagonal, U upper triangular

 Then, x is obtained by solving two triangular systems with L and U
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Sparse GE

Sparse matrices are ubiquitous
 Example: A of dimension 106, 10~100 nonzeros per row

Nonzero costs flops and memory

Scalar algorithm: 3 nested loops
 Can re-arrange loops to get different variants: left-looking, right-looking, . . .
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for i = 1 to n

column_scale ( A(:,i) )

for k = i+1 to n  s.t. A(i,k) != 0

for j = i+1 to n  s.t. A(j,i) != 0 

A(j,k) = A(j,k) - A(j,i) * A(i,k)

Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems
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Early Days . . . Envelope (Profile) solver

Define bandwidth for each row  or column
A little more sophisticated than band solver

Use Skyline storage (SKS)
Lower triangle stored row by row

Upper triangle stored column by column

In each row (column), first nonzero

defines a profile

All entries within the profile (some may be zeros) are stored

All fill-ins are confined in the profile

A good ordering would be based on bandwidth reduction
E.g., (reverse) Cuthill-McKee
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RCM ordering
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Breadth-first search, numbering by levels, then reverse
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Example: 3 orderings (natural, RCM, Minimum-degree)

Envelop size = sum of bandwidths

After LU, envelop would be entirely filled

Is Profile Solver Good Enough?

Env = 31775 Env = 22320
Env = 61066
NNZ(L, MD) = 12259
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A General Data Structure: Compressed Column Storage (CCS)

Also known as Harwell-Boeing format
Store nonzeros columnwise contiguously
3 arrays:

 Storage: NNZ reals, NNZ+N+1 integers

Efficient for columnwise algorithms

 “Templates for the Solution of Linear Systems: Building Blocks for Iterative 
Methods”,  R. Barrett et al.
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General Sparse Solver

Use (blocked) CRS or CCS, and any ordering method
 Leave room for fill-ins !  (symbolic factorization)

Exploit “supernodal” (dense) structures in the factors
 Can use Level 3 BLAS
 Reduce inefficient indirect addressing (scatter/gather)
 Reduce graph traversal time using a coarser graph
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Numerical Stability: Need for Pivoting

One step of GE:



 If α is small, some entries in B may be lost from addition

Pivoting: swap the current diagonal entry with a larger 
entry from the other part of the matrix

Goal: prevent      from getting too large
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Dense versus Sparse GE

Dense GE:    Pr A Pc = LU

Pr and Pc are permutations chosen to maintain stability

Partial pivoting suffices in most cases :  Pr A = LU

Sparse GE:   Pr A Pc = LU

Pr and Pc are chosen to maintain stability and preserve 
sparsity, and increase parallelism

Dynamic pivoting causes dynamic structural change

• Alternatives: threshold pivoting, static pivoting, . . .
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Algorithmic Issues in Sparse GE

 Minimize number of fill-ins, maximize parallelism
 Sparsity structure of L & U depends on that of A, which can be 

changed by row/column permutations (vertex re-labeling of the 
underlying graph)

 Ordering (combinatorial algorithms; NP-complete to find 
optimum [Yannakis ‟83]; use heuristics)

 Predict the fill-in positions in L & U
 Symbolic factorization (combinatorial algorithms)

 Perform factorization and triangular solutions
 Numerical algorithms (F.P. operations only on nonzeros)

• How and when to pivot ?

 Usually dominate the total runtime
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Ordering

RCM is good for profile solver

General unstructured methods:
Minimum degree  (locally greedy)

Nested dissection (divided-conquer, suitable for parallelism)
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Ordering : Minimum Degree (1/3)

Local greedy: minimize upper bound on fill-in

Eliminate 1
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Minimum Degree Ordering (2/3)

At each step
 Eliminate the vertex with the smallest degree

 Update degrees of the neighbors

Greedy principle: do the best locally
Best for modest size problems

Hard to parallelize

Straightforward implementation is slow and requires too 
much memory
Newly added edges are more than eliminated vertices
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Minimum Degree Ordering (3/3)

Use quotient graph as a compact representation 
[George/Liu ‟78]

Collection of cliques resulting from the eliminated 
vertices affects the degree of an uneliminated vertex

Represent each connected component in the eliminated 
subgraph by a single “supervertex”

Storage required to implement QG model is bounded by 
size of A

Large body of literature on implementation variants
Tinney/Walker `67, George/Liu `79, Liu `85, 

Amestoy/Davis/Duff  `94, Ashcraft `95, Duff/Reid `95, et al., . . 
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Nested Dissection Ordering (1/3)

Model problem: discretized system Ax = b from certain 
PDEs, e.g., 5-point stencil on  k x k  grid,  N = k^2

Theorem: ND ordering gave optimal complexity in exact 
arithmetic [George ‟73, Hoffman/Martin/Rose, Eisenstat, Schultz 
and Sherman]

2D (kxk = N grids): O(N logN) memory, O(N3/2) operations

3D (kxkxk = N grids): O(N4/3) memory, O(N2) operations
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ND Ordering (2/3)

Generalized nested dissection [Lipton/Rose/Tarjan ‟79]

 Global graph partitioning: top-down, divide-and-conqure
 Best for largest problems

 Parallel codes available: e.g., ParMetis, Scotch

 First level

 Recurse on A and B

Goal: find the smallest possible separator S at each level
 Multilevel schemes: 

 Chaco [Hendrickson/Leland `94],  Metis [Karypis/Kumar `95]

 Spectral bisection [Simon et al. `90-`95]

 Geometric and spectral bisection [Chan/Gilbert/Teng `94]
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ND Ordering (3/3)
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Ordering for LU (unsymmetric)

 Can use a symmetric ordering on a symmetrized matrix
 Case of partial pivoting (sequential SuperLU):

Use ordering based on ATA
 Case of static pivoting (SuperLU_DIST):

Use ordering based on AT+A

 Can find better ordering based solely on A
 Diagonal Markowitz   [Amestoy/Li/Ng „06]
 Similar to minimum degree, but without symmetrization

 Hypergraph partition   [Boman, Grigori, et al., „09]
 Similar to ND on ATA, but no need to compute ATA
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High Performance Issues: 
Reduce Cost of Memory Access & Communication

Blocking to increase flops-to-bytes ratio

Aggregate small messages into one larger message
Reduce cost due to latency

Well done in LAPACK, ScaLAPACK
Dense and banded matrices

Adopted in the new generation sparse software
Performance much more sensitive to latency in sparse 

case
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Source of parallelism (1): Elimination Tree

For any ordering . . .

A column       a vertex in the tree

Exhibits column dependencies during 
elimination
 If column j updates column k, then vertex 

j is a descendant of vertex k

 Disjoint subtrees can be eliminated in 
parallel

Almost linear algorithm to compute 
the tree
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Source of parallelism (2): Separator Tree

Ordering by graph partitioning
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Source of parallelism (3): global partition and distribution

 2D block cyclic recommended for many linear algebra algorithms

 Better load balance, less communication, and BLAS-3

1D blocked 1D cyclic

1D block cyclic 2D block cyclic
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Major stages of sparse LU

1. Ordering

2. Symbolic factorization

3. Numerical factorization – usually dominates total time

 How to pivot?

4. Triangular solutions

SuperLU_MT
1. Sparsity ordering

2. Factorization (steps interleave)
• Partial pivoting
• Symb. fact.
• Num.  fact. (BLAS 2.5)

3. Solve

SuperLU_DIST

1. Static pivoting
2. Sparsity ordering
3. Symbolic fact.
4. Numerical fact. (BLAS 3)
5. Solve

27
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SuperLU_MT  [Li/Demmel/Gilbert]

Pthreads or OpenMP

Left looking -- many more reads than writes

Use shared task queue to schedule ready columns in the elimination 
tree (bottom up)

P1   P2

DONE NOT
TOUCHED
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U

L

A
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SuperLU_DIST [Li/Demmel/Grigori]

MPI

Right looking -- many more writes than reads

Global 2D block cyclic layout, compressed blocks

One step look-ahead to overlap comm. & comp.
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Multicore platforms

Intel Clovertown: 
2.33 GHz Xeon, 9.3 Gflops/core

2 sockets X 4 cores/socket

L2 cache: 4 MB/2 cores

Sun VictoriaFalls: 
1.4 GHz UltraSparc T2, 1.4 Gflops/core

2 sockets X 8 cores/socket X 8 hardware threads/core

L2 cache shared: 4 MB
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Benchmark matrices

apps dim nnz(A) SLU_MT
Fill

SLU_DIST
Fill

Avg. 
S-node

g7jac200 Economic
model

59,310 0.7 M 33.7 M 33.7 M 1.9

stomach 3D finite 
diff.

213,360 3.0 M 136.8 M 137.4 M 4.0

torso3 3D finite 
diff.

259,156 4.4 M 784.7 M 785.0 M 3.1

twotone Nonlinear 
analog 
circuit

120,750 1.2 M 11.4 M 11.4 M 2.3
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Clovertown

Maximum speedup 4.3,  smaller than conventional SMP

Pthreads scale better

Question: tools to analyze resource contention

32



CS267

VictoriaFalls – multicore + multithread

 Maximum speedup 20

 Pthreads more robust, scale better

 MPICH crashes with large #tasks,

mismatch between coarse and fine 

grain models

SuperLU_MT SuperLU_DIST
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Larger matrices

 Sparsity ordering: MeTis applied to structure of A‟+A

Name Application Data

type

N |A| / N

Sparsity

|L\U|

(10^6)

Fill-ratio

g500 Quantum

Mechanics

(LBL)

Complex 4,235,364 13 3092.6 56.2

matrix181 Fusion,

MHD eqns

(PPPL)

Real 589,698 161 888.1 9.3

dds15 Accelerator,

Shape 
optimization

(SLAC)

Real 834,575 16 526.6 40.2

matick Circuit sim.

MNA method

(IBM)

Complex 16,019 4005 64.3 1.0
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Strong scaling: Cray XT4 (2.3 GHz)

Up to 794 Gflops factorization rate
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Weak scaling

 3D KxKxK cubic grids, scale N2 = K6 with P for constant-work-per-
processor

 Performance sensitive to communication latency
 Cray T3E latency: 3 microseconds ( ~ 2700 flops,  450 MHz,  900 Mflops)

 IBM SP latency: 8 microseconds  ( ~ 11940 flops,  1.9 GHz,  7.6 Gflops)
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Analysis of scalability and isoefficiency

Model problem: matrix from 11 pt Laplacian on k x k x k (3D) mesh; 
Nested dissection ordering
 N = k3

 Factor nonzeros (Memory) : O(N4/3)

 Number of flops (Work) : O(N2)

 Total communication overhead : O(N4/3 P)  

(assuming P processors arranged as               grid)

 Isoefficiency function: Maintain constant efficiency if “Work” 
increases proportionally with “Overhead”:
This is equivalent to:

 Memory-processor relation:                      
 Parallel efficiency can be kept constant if the memory-per-processor is 

constant,  same as dense LU in ScaLPAPACK

 Work-processor relation:
 Work needs to grow faster than processors

PP 

cPNcN /  const. somefor  ,342 

PcN  23/4

2/332 PcN 
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Incomplete factorization (ILU) preconditioner

 A very simplified view:

 Structure-based dropping:  level of fill
 ILU(0),  ILU(k)

 Rationale: the higher the level, the smaller the entries

 Separate symbolic factorization step to determine fill-in pattern

 Value-based fropping:  drop truly small entries
 Fill-in pattern must be determined on-the-fly

 ILUTP [Saad]: among the most sophisticated, and (arguably) robust
 “T” = threshold, “P” = pivoting

 Implementation similar to direct solver

 We use SuperLU code base to perform ILUTP
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SuperLU [Demmel/Eisenstat/Gilbert/Liu/Li ’99]

http://crd.lbl.gov/~xiaoye/SuperLU
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• Left-looking,  supernode

1.Sparsity ordering of columns

use graph of A’*A

2.Factorization

For each panel …

• Partial pivoting

• Symbolic fact.

• Num.  fact. (BLAS 2.5)

3.Triangular solve
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Primary dropping rule:  S-ILU(tau)   [Li/Shao „09]

Similar to ILUTP, adapted to supernode
1. U-part:

2. L-part:  retain supernode

Compare with scalar ILU(tau)
 For 54 matrices, S-ILU+GMRES converged 

with 47 cases, versus 43 with scalar 

ILU+GMRES

 S-ILU +GMRES is 2.3x faster than scalar

ILU+GMRES
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Secondary dropping rule:  S-ILU(tau,p)

Control fill ratio with a user-desired upper bound 

Earlier work, column-based
 [Saad]: ILU(tau, p), at most p largest nonzeros allowed in each row

 [Gupta/George]: p adaptive for each column

May use interpolation to compute a threshold function, no sorting

Our new scheme is “area-based”


Define adaptive upper bound function

More flexible, allow some columns to fill more, but limit overall
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Experiments: GMRES + ILU

Use restarted GMRES with our ILU as a right 
preconditioner

Size of Krylov subspace  set  to 50

Stopping criteria: 
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S-ILU for extended MHD (plasma fusion engery)

Opteron 2.2 GHz (jacquard at NERSC),  one processor

ILU parameters: drop_tol = 1e-4,   gamma = 10

Up to 9x smaller fill ratio, and 10x faster

43

Problems order Nonzeros
(millions)

ILU
time   fill-
ratio

GMRES
time      
iters

SuperLU
time   fill-
ratio

matrix31 17,298 2.7 m 8.2 2.7 0.6 9 33.3 13.1

matrix41 30,258 4.7 m 18.6 2.9 1.4 11 111.1 17.5

matrix61 66,978 10.6 m 54.3 3.0 7.3 20 612.5 26.3

matrix121 263,538 42.5 m 145.2 1.7 47.8 45 fail -

matrix181 589,698 95.2 m 415.0 1.7 716.0 289 fail -



CS267

Compare with other ILU codes

44

SPARSKIT 2 : scalar version of ILUTP [Saad] 

ILUPACK 2.3 : inverse-based multilevel method [Bolhoefer et al.]

232 test matrices : dimension 5K-1M

Performance profile of runtime – fraction of the problems a solver 
could solve within a multiple of  X of the best solution time among all 
the solvers

S-ILU succeeded with 141

ILUPACK succeeded with 130

Both succeeded with 99



CS267

Hybrid solver – Schur complement method 

Schur complement method 
 a.k.a. iterative substructuring method

 a.k.a. non-overlapping domain decomposition

Partition into many subdomains
Direct method for each subdomain, perform partial elimination 

independently, in parallel

Preconditioned iterative method for the Schur complement 
system,  which is often better conditioned, smaller but denser
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 Case with two subdomains

Structural analysis view
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Nested dissection, graph partitioning

Memory requirement: fill is restricted within
“small” diagonal blocks of A11, and 

ILU(S),  sparsity can be enforced

Two levels of parallelism:  can use lots of processors
multiple processors for each subdomain direct solution

only need modest level of parallelism from direct solver

multiple processors for interface iterative solution

Parallelism – multilevel partitioning
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Parallel performance on Cray XT4   [Yamazaki/Li „10]

 Omega3P to design ILC 
accelerator cavity (Rich Lee, 
SLAC)

 Dimension: 17.8 M, real 
symmetric, highly indefinite

 PT-SCOTCH to extract 64 
subdomains of size ~ 277K. The 
Schur complement size is ~ 57K

 SuperLU_DIST to factorize 
each subdomain

 BiCGStab of PETSc to solve the 
Schur system, with LU(S1) 
preconditioner

 Converged in ~ 10 iterations, 
with relative residual < 1e-12
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Summary

Sparse LU, ILU are important kernels for science and 
engineering applications, used in practice on a regular basis

Good implementation on high-performance machines requires a 
large set of tools from CS and NLA

Performance more sensitive to latency than dense case
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Open problems

Much room for optimizing performance
Automatic tuning of blocking parameters

Use of modern programming language to hide latency (e.g., UPC)

Scalability of sparse triangular solve
Switch-to-dense, partitioned inverse

Parallel ILU

Optimal complexity sparse factorization
In the spirit of fast multipole method, but for matrix inversion

J. Xia‟s dissertation (May 2006)

Latency-avoiding sparse factorizations


